Index
Problem list
Graph
Coloring
References
TODO list
Graph
/
Coloring
(
Bibtex
)
P122
:
Enumeration of all the edge colorings in a bipartite graph
Input:
A bipartite graph $G = (V, E)$.
Output:
All edge colorings in $G$.
Complexity:
$O(\Delta|E|)$ time per solution and space.
Comment:
$\Delta$ is the maximum degree in $G$.
Reference:
[
Yasuko1994
] (
Bibtex
)
P86
:
Enumeration of all the edge colorings of a bipartite graph
Input:
A bipartite graph $B = (V, E)$.
Output:
All the edge colorings pf $B$.
Complexity:
$O(T(|V|+|E|+\Delta) + K \min \{|V|^2 + |E|, T(|V|, |E|, \Delta)\})$ total time and $O(|E|\Delta)$ space.
Comment:
$\Delta$ is the number of maximum degree and $T(|V|, |E|, \Delta)$ is the time complexity of an edge coloring algorithm.
Reference:
[
Matsui1996b
] (
Bibtex
)
P87
:
Enumeration of all the edge colorings of a bipartite graph
Input:
A bipartite graph $B = (V, E)$.
Output:
All the edge colorings pf $B$.
Complexity:
$O(|V|)$ time per solution and $O(|E|)$ space.
Comment:
Reference:
[
Matsui1996a
] (
Bibtex
)
P451
:
Enumerate all maximal 3-colorable subgraph of a graph.
Input:
A graph $G = (V, E)$.
Output:
All maximal 3-colorable subgraphs of $G$.
Complexity:
$O(2.2680^{|V|})$ total time with $O(2^{|V|})$ space.
Comment:
Reference:
[
Byskov2004
] (
Bibtex
)
P452
:
Enumerate all maximal 6-colorable subgraph in a graph.
Input:
A graph $G = (V, E)$.
Output:
All maximal 6-colorable subgraphs in $G$.
Complexity:
$O(2.2680^{|V|})$ total time and $O(2^{|V|})$ space.
Comment:
Reference:
[
Byskov2004
] (
Bibtex
)
P453
:
Enumerate all maximal $k$-colorable subgraphs in a graph
Input:
A graph $G = (V, E)$ and an integer $k \ge 4$.
Output:
All maximal $k$-colorable subgraphs in $G$.
Complexity:
$O(2.4023^{|V|})$ total time and $O(2^{|V|})$ space.
Comment:
Reference:
[
Byskov2004
] (
Bibtex
)